
Incremental Hoarding and Reintegration in Mobile
Environments

Abhinav Khushraj, Abdelsalam (Sumi) Helal and Jinsuo Zhang

Computer and Information Science and Engineering Department
University of Florida, Gainesville, FL 32611-6120, USA

helal@cise.ufl.edu

ABSTRACT
Disconnection is one of the popular techniques for operating in mobile

environments and is here to stay, until long-range wireless connectivity becomes
a reality. However, disconnection requires periodic hoarding and reintegration of
data, which raises performance issues especially during weak connection. A
common hoarding and reintegration mechanism involves complete transfer of
contents. In order to hoard and reintegrate efficiently, an incremental approach
is being introduced to do data transfers based on the delta between changes.
Data objects are differentially transferred in either direction – to hoard from the
server to the client, and to reintegrate changes made while disconnected from the
client to the server – and are patched on the receiving side to generate full
copies. QuickConnect and MoneyConnect are two important and useful features
that are also being introduced to allow mobile users to control the amount of
connection time and money spent during weakly connected re-integration.
Performance evaluation of this system proves that it does efficient incremental
hoarding and is beneficial on any type of connection. Analysis also shows that
incremental reintegration is particularly beneficial in the weakly connected mode
of operation. The incremental hoarding and reintegration setup is built within the
Coda File System of the Carnegie Mellon University to replace the full file
transfer mechanism with the incremental approach, based on the Revision
Control System (RCS).

1. INTRODUCTION
In the present computing age users demand constant availability of data and information which is typically

stored on their workstations, corporate file servers, and other external sources such as the WWW. With the
increasing popularity and prevalence of mobile computing, mobile users are demanding the same when only
limited network bandwidth is available, or even when network access is not available. Moreover, given the
growing popularity of portables, laptops and personal digital assistants (PDA), mobile users are requiring access
to the data regardless of the form-factor or rendering capabilities of the mobile device they choose to use.

In this space, three broad challenges are imposed by mobility [HEL01]:

1. Any time, anywhere access to data, regardless of whether the user is connected, weakly connected via a
high latency, low bandwidth network, or completely disconnected

2. Device-independent access to data, where the user is allowed to use and switch among different portables
and PDAs

3. Support for mobile access to heterogeneous data sources such as files belonging to different file systems
and/or resource managers.

This paper addresses the first challenge – access to data anywhere, anytime, which is a step towards
ubiquitous computing and facilitates management of data in different connectivity modes – strong, weak and no
connection.

In today’s computing world, networks provide very high performance and bandwidth and are highly
transparent. The network bandwidth is no longer the rate-determining step for applications and systems.
However, this argument holds true only for the fixed and wired networks. To reach the same level of network
performance and efficiency over mobile networks is still a far-fetched reality and so we have to explore ways to
counter the challenges posed by mobility.

Mobile devices are in general resource poor and computationally starved when compared to desktops and
their counterparts. They have smaller memory and persistent storage space. Their weight, power and size are
much smaller and lesser [SAT93]. The biggest challenge is, however, the network. Mobile elements have to
operate under a very broad range of network conditions. The connection may vary from full range 10mbps on
802.11b wireless LANs to 56kpbs modem connection from home to 0bps in disconnected mode while traveling.
The connection may also be intermittent and users may voluntarily disconnect to save connection cost and power
consumption.

To operate disconnected, two important mechanisms are required – hoarding and reintegration. Hoarding is
the process of caching important and relevant user data onto mobile devices prior to disconnection. While
disconnected, the cache in the mobile device might be updated due to changes made by the user and applications
running on the mobile device. Reintegration is the mechanism by which all these updates are synchronized with
the fixed network upon reconnection.

Users invariably operate under weak connection (56kbps ranges), for example –

� At home when users want to work over a weekend they have to rely on a slow modem connection that ranges
from 28kbps to 56 kbps.

� When high-flying executives want to collaborate from the airplane with peers on the fixed network, they have
to use the expensive phone connection that provides very little bandwidth.

� Mobile users on the 802.11b wireless LAN have very weak connection when they are in the periphery of the
coverage area. Moreover, there is intermittence owing to their movement into and out of range of the LAN
access points.

Under weak connection, hoarding and reintegration is time consuming owing to the minimal bandwidth
available. Especially, hoarding and reintegrating large files over slow networks may not be desirable in many
situations.

Another important aspect is that users make very little changes while mobile. Disconnected operation is
based on the assumption that users operate without connectivity for short periods of time using their locally
stored copies for lack of network connection or due to high connection costs. A businessman may work
disconnected on some incomplete document while away from office, a developer may be writing programs from
home on a weekend using his locally cached copies. While disconnected, users have some common
characteristics –

� They frequently work on the same set of files that they had created when they were connected

� They generally make very little changes to their files during the short periods of disconnection. If there is a
text file or a program file they are working on, they update only few lines while being mobile

� In order to save connection cost users have the general tendency to work on their files or write emails without
being connected. They then connect for a small period of time and synchronize their mobile device with the
outside world

The main idea in this paper is to do incremental hoarding and reintegration by exploiting the fact that users
make minimal changes while they are mobile. In this incremental approach, we do differential transfer of data
objects (files, databases, etc.) instead of hoarding and reintegrating full data objects. The incremental approach
implemented by us is for transfer of file changes in either direction – from server to client and vice versa. To this
end, we use a version control system to compute and maintain object differentials.

We also present two useful tools – QuickConnect and MoneyConnect that aid mobile users to make
conscious decisions regarding the time and money spent for reintegration. QuickConnect is a tool that gives the
mobile user the ability to specify the connection time for reintegration. MoneyConnect, in the same lines, lets the
user specify the amount of money he is willing to spend for reintegration. This is especially useful when the cost
model is based on packets transferred (e.g., iDen packet data or GPRS).

We have implemented all of this within the Coda File System of the School of Computer Science at the
Carnegie Mellon University. Coda is a distributed file system that has a user level cache on the client to support
disconnected operation.

To be able to do incremental hoarding and reintegration we need to keep track of the different versions of the
files on both Vice and Venus. Revision Control System (RCS) [TIC85] is a software tool originally developed by
Walter. F. Tichy at Purdue University that assists with this task of version control by automating the storing,
retrieval, logging and identification of revisions. We use RCS functionalities to maintain the various file versions
and to compute the file differences between changes.

This paper first discusses about the types of connectivity and the challenges imposed. We give an overview
of Coda before we explain incremental hoarding and reintegration. The paper then presents performance results
of using the incremental approach. We finally conclude showing the benefits and drawbacks of using this
approach.

2. TYPES OF CONNECTIVITY
In the foreseeable future, mobile clients will encounter a wide range of network characteristics in the course

of their journeys. Cheap, reliable, high-performance connectivity via wired or wireless media will be limited to a
few oases in a vast desert of poor connectivity. Mobile clients must therefore be able to use networks with rather
unpleasant characteristics: intermittence, low bandwidth, high latency, or high expense [MUM95].

Networks that are not limited by such shortcomings are generally called strongly connected. We mean that
the network is not responsible in any way for any performance degradation in the systems and applications that
are using it. With the current technology, such high-quality networks with unlimited bandwidths are usually
found only in Local Area Networks (LAN).

Mobile networks are inherently weak and are challenged by all the above factors. Strong connectivity for
wireless networks is a distant reality and weak connection may always be a characteristic of mobile computing.

To counter the challenges posed by lack of connectivity, researchers have come up with interesting mobile
computing models. One of the earliest and most impressive models is the disconnected operation model that came
into importance due to constant network and server failures. Its implications were soon identified for supporting
mobility by Dr. M. Satyanarayanan who pioneered the research of this model in the classic work called Coda, a
distributed file system that supports disconnected operation for mobile clients.

Disconnected operation is a mode of operation in which the client continues to operate by accessing data that
is locally stored during temporary failure or absence of shared data repository. It is based on caching wherein
important and useful data is cached locally thereby increasing availability and performance [KIS92].

Disconnections can be of two types: involuntary disconnections that are caused by network and server
failures, out of range of connectivity and line-of sight constraints and voluntary disconnections that are caused
when users choose to not have network access for their portable computers. Disconnections are caused by
handoff blank out (> 1ms for most cellulars), drained battery disconnection, battery recharge down time,
voluntarily disconnected to preserve battery power, theft and damage. The ways these are handled are almost the
same except that user expectation and co-operation are likely to be different.

However, disconnected operation has its own limitations and drawbacks [MUM96].

� Updates are not visible to other clients

� Cache misses may impede progress

� Updates are at risk due to theft, loss or damage

� Update conflicts become more likely

� Exhaustion of cache space is a concern

Coda exploits weak connectivity to offset these problems. In the next section we will discuss about Coda and
how it manages the different types of connectivity.

3. OVERVIEW OF CODA AND RCS
We have implemented the incremental approach within the Coda File System. However, the incremental

approach can in general be applied to other mobile file systems. We will only briefly discuss Coda; for more
information please refer to other papers on Coda [CODA, KIS92, KIS93, MUM95, MUM96].

3.1. Coda Structure and Venus States
Coda is based on the classic client-server computing model. It is designed for a large collection of untrusted

clients and a much smaller number of trusted servers [KIS92, SAT90]. Each Coda client is called Venus and has
a local cache on which it relies for all its file accesses. Each server is called a Vice. In the absence of any Vice or
network connection clients operate disconnected.

Venus exists in three states – hoarding, emulating and write-disconnected. Venus is normally in the hoarding
state during which it is responsible for caching all the important and useful data for operating with minimal cache
misses during disconnection. When Venus disconnects from the network its cache begins to emulate the server
and services all file requests. Any file request that cannot be serviced from the cache is reported to the user as a
cache-miss. The ongoing work might be impeded and in such an event the extent of damage caused depends on
how critical that file is for a particular task. All of the file operations that are made while Venus is disconnected
are logged in the Client Modification Log (CML).

Upon reconnection, Venus starts its process of reintegration. The CML is packed together and sent to the
Vice via an RPC and the file operations made while disconnected are replayed on the server side. For any store
operations that are replayed, the Vice does a callback fetch on the corresponding Venus and fetches the actual
file contents associated with that store operation. While disconnected, however, Venus optimizes its CML by
canceling corresponding store and unlink operations. This way it can reduce the number of operations that
have to be replayed and the callback fetches that will be made by the Vice. This is the basic reintegration
mechanism in Coda and occurs during the write-disconnected state. In the write-disconnected state, files can be
fetched from Vice to Venus but the updates from Venus cannot be propagated to Vice immediately. This state
was introduced later in Coda with the aim to support weak-connectivity.

3.2. Handling of Weak-Connectivity
Coda uses two main techniques to handle weak connectivity. They are rapid cache validation and trickle

reintegration. The write-disconnected state discussed above is essentially designed to manage weak connectivity
in Coda [MUM95].

When a client reconnects after a period of disconnection it has to validate each of the objects it has in its
cache. During weak connection this imposes unnecessary load on the network, wastes lot of connection time and
increases latency. To counter this, Coda raises the granularity at which it performs validation. Instead of
performing validation for each and every object, it validates entire volumes. This removes the need to validate
every object in a volume if the entire volume has been identified to be valid. This method is called the rapid
cache validation.

However, the primary mechanism by which Coda handles weak connectivity is by trickle reintegration.
Trickle reintegration is a mechanism that propagates updates to servers asynchronously, while minimally
impacting foreground activity [MUM95]. In the write-disconnected state, the behavior of Venus is a combination
of its connected and disconnected behaviors. While file operations are logged into the CML, updates are also
propagated to the Vice. During weak connectivity reintegration is a constant background activity and so it is
termed trickle reintegration.

In trickle reintegration, instead of packing the entire set of updates in the CML and sending it to the Vice for
reintegration, it now packs only those operations in the log that have aged. Aging is a mechanism that ensures
that records have spent a sufficient amount of time in the log and have been candidates for log optimizations. By
separating the foreground activity from the slow propagation of updates, trickle reintegration improves the
system for operation in weak connectivity.

In Coda, in spite of remaining in the write-disconnected state and decoupling the foreground activity from the
slow and continuous propagations of updates by doing trickle reintegration, it still suffers from a limitation: the
updated files are propagated in their entirety [LEE99]. Though the response time for the user decreases the actual
propagation of the changes generates heavy traffic. If a hoarded file in Venus becomes stale, then Venus simply
discards it and fetches the whole up-to-date version of this file from Vice. In a high-speed LAN this does not
have much effect but in a mobile environment the client is usually a laptop or a PDA connected through a slow
modem connection that affects the time it takes to hoard and reintegrate complete files.

3.3. Revision Control System
To support the incremental approach we have to maintain all the file versions that are created at the server.

Saving each and every file would be inefficient and managing each version would not be easy. Instead, a good
version control system is used in which files can be checked in and checked out for specific versions. Version
control systems maintain a modification log relative to one initial version. Therefore versioning effectively stores
only one physical version that is highly efficient and especially useful in the incremental approach where we
want to maintain revisions for each file. Some of the popular version control systems on the Unix side are SCCS,
RCS and CVS. After careful consideration we chose RCS because of its simplicity and ease of use.

RCS assists with the task of keeping software system consisting of many versions and configurations well
organized [TIC85]. A detailed description of the commands that RCS provides can be looked up in the manual
page of RCS. Some of the common commands and those that have been used in this work are ci, co, rlog, rcs, and
rcsdiff. Apart from the RCS commands we also use two other standard Unix utilities – diff and patch.

4. INCREMENTAL HOARDING
Hoarding that is done based on the incremental approach is called incremental hoarding. When Venus

caches a file by hoarding, it gets a callback promise from the Vice that it will intimate the client if the cache
version becomes stale. If two Venii are holding copies of the same file and if one of them updates that file, Vice
makes a callback on the unchanged Venus. This Venus does a callback break by dropping the version it has and

fetching the latest version from Vice. In order to reintegrate incrementally, this client will have to fetch the
difference instead of the complete up-to-date version.

To support incremental hoarding, both Venus and Vice had to be modified. Our basic approach is to identify
the Coda file transfer mechanism and modify it so that it transfers the difference files. We identified the RPC
calls in Coda that are invoked for performing file transfers during hoarding. While hoarding, we use the same
RPCs that are being used by Coda. However, we replace the full file that was being transferred with the
difference file before making the RPC call as will be explained below.

Figure 1: (a) The thick arrows indicate the heavy network load between the client and server when it does not
use the incremental approach. (b) and (c) indicate how the client and the server have been modified in order to
support incremental hoarding and reintegration. The thin lines are an indication of the efficient network usage

For incremental hoarding we have to maintain every version of a particular file at Vice. We could store every
version of the file but that would be a storage overhead. Instead a good version control system is being used. RCS
is used to maintain the versions of a file. The basic mechanism is to check-in the latest version of a particular file
into the RCS server and later use the RCS server to compute file differences between file versions.

Whenever a new file is created at Vice, the first version of the corresponding RCS file is also created. This is
done by the RCS check-in command ci. When newer versions of this file are created, they are simply checked-in
into the corresponding RCS server. More on this will be discussed in incremental reintegration.

An archive.info file is created in /usr/coda/archive if it does not exist already which holds the version
information of the files along with the complete path name in the Coda namespace. When a particular Venus file
gets a callback break from the server, it makes a ViceFetch RPC call from the Fetch function in Venus to the
Vice requesting the newer version of the file. Before it makes the RPC call Venus checks in its archive.info if it
has an older version of the file that is about to be fetched. If so it prepares to fetch only the difference file instead
of the complete file. To do so it reads the version number from archive.info and sets it in the dataVersion vector
of the ViceStatus object. It also changes the name of the file to be fetched in the SFTP_Descriptor. The
RPC call is made now to fetch the difference by passing the connection id, file id, version number and other
parameters as described in the function signature below.

Coda Server RCS Server

diff

diff

patch before ci

rcsdiff upon the latest
version

Archive

File System Venus Cache
patch

store

diff

diff
ge

t o
ld

ve
rs

io
n

st
or

e
ol

d
ve

rs
io

n

Venus
Cache

Coda server

(a)

(c)

(b)

ViceFetch (IN ViceFid Fid,
IN ViceVersionVector VV,
IN RPC2_Unsigned InconOK,
OUT ViceStatus Status,
IN RPC2_Unsigned PrimaryHost,
IN RPC2_Unsigned Offset,
IN RPC2_CountedBS PiggyCOP2,
IN OUT SE_Descriptor BD);

At the Vice, the procedure that handles this RPC call is FS_ViceFetch. The steps carried out by the RPC
for doing the fetch are

1. Validate Parameters
2. Get Objects
3. Check Semantics (Concurrency Control, Integrity Constraints, Permissions)
4. Perform Operation (Bulk Transfer, Update Objects, Set Out Parameters)
5. Put Objects

In step 4, the parameters of the bulk transfer function FetchBulkTransfer are modified so as to pass the
version number along with it. Inside this function, before doing the actual file transfer using SFTP, it computes
the difference file if the version number received is greater than 0. rcsdiff computes the difference file by
using the version number against the latest version in the RCS server for that file object.

The SE_Descriptor is modified so that the file to be transferred is set to the difference file instead of the
latest file available at the server. The difference file is now transferred to Venus by passing the modified
SE_Descriptor to the SFTP RPC called RPC2_CheckSideEffect that does the file transfer.

At Venus, after the RPC returns, it retrieves the file it has in the archive corresponding to the version number
in the archive.info. The difference file obtained from the RPC call is patched to this archive version and the latest
file is generated that matches the latest version that is at the server. This file is now made available in the Venus
cache and is accessible from the Coda namespace.

For a remove operation the particular file object that is being deleted is archived. The file is removed from the
cache and the relevant RPCs are called to delete the file and its RCS server from Vice.

Similarly, if a file is renamed it is handled gracefully by changing the name of the archive file at the client and
by changing the name of the RCS repository at the server.

5. INCREMENTAL REINTEGRATION
Incremental reintegration is used to transfer changes from the clients to the servers efficiently based on the

incremental approach. In a weakly connected mobile environment reintegrating by transferring complete files
lays a heavy burden on the network. In Coda, all STORE operations have to be reintegrated to the server so that
the server maintains cache coherence across the distributed file system. STORE operations occur at the client
while the user is connected or when he is disconnected.

To implement incremental reintegration within Coda we used a similar approach as we did for hoarding
incrementally. We identified those RPCs that are responsible for performing the STORE operations on the client.

There are two types of store operations in Venus. The STORE operations performed while the client is
connected are categorized as connected stores and are handled by the ConnectedStore function. The STORE

operations performed when the client is disconnected are called disconnected stores and are handled by the
DisconnectedStore function. The RPCs called in each of these are different.

In ConnectedStore the ViceStore RPC originally transferred the newly created files in its entirety.
However, to support incremental transfer of the files we create the difference file between the new version just
created at the client and the old version that existed before the change was made.

To be able to create the difference file, Venus needs to maintain an archive that has the one of the older
versions of this file object. If the current STORE operation is the first STORE on this file object then it has no old
versions in its archive and the file has to be transferred in its entirety. This archive is generally stored in
/usr/coda/archive. The entire Coda namespace from /coda is archived in this directory at
/usr/coda/archive/coda. This is also the archive that is used by the Fetch function for incremental
hoarding as explained earlier.

The ConnectedStore function uses the diff utility of Linux that is execed from within Venus to
calculate the temporary difference file. It also calculates its new length and changes the file name in the
SFTP_Descriptor that carries information about the file that will be transferred by the RPC.

The RPC called for the file transfer is ViceStore. This RPC has been modified so that it checks out (using
co of RCS) the appropriate version from the RCS server of that file and applies the difference file that it obtains
by calling StoreBulkTransfer. This function is responsible for doing the actual file transfers between the
server and the client brings the difference file to the server. This difference file is patched to the checked-out
version to generate the new version. The new version hence generated is checked in (using ci of RCS) back into
the RCS server. Following is the signature of the ViceStore RPC.

ViceStore (IN ViceFid Fid,
IN OUT ViceStatus Status,
IN RPC2_Integer Length,
IN RPC2_Unsigned PrimaryHost,
IN ViceStoreId StoreId,
IN RPC2_CountedBS OldVS,
OUT RPC2_Integer NewVS,
OUT CallBackStatus VCBStatus,
IN RPC2_CountedBS PiggyCOP2,
IN OUT SE_Descriptor BD);

The basic steps carried out by ViceStore at Vice are the same as described earlier with ViceFetch.

DisconnectedStore is responsible for logging all the file operations that are performed during
disconnection. This is called the Client Modification Log (CML) and it is also stored persistently. The STORE
operations are logged in the CML along with their length. We have modified this length that is logged in the
CML to the length of the difference file that will be generated when connection is restored and reintegration
occurs. We calculate the length of the difference by measuring the length of the difference between the cache file
and the archive file. If another STORE happens on the same file while continuing to be disconnected, the new
STORE will replace the old STORE also setting the appropriate length.

When connection is restored, Venus makes a transition from the Emulating state to the Write-disconnected
state and starts reintegration of all the changes made while disconnected. The CML is packed and sent to the
server to be replayed there. However, Vice does a CallBackFetch for all the STORE operations that it
replays. The CallBackFetch RPC does a transfer of those files that correspond to a STORE in the CML. We
modified the CallBackFetch RPC at Venus so that it transferred just the difference file that is computed as
described in ConnectedStore. On the receiving side in Vice the new file is generated in the same way as it is

for ViceStore – the difference file is patched to the corresponding RCS server version and the new file is
generated and checked-in into the RCS server. The signature of the CallBackFetch RPC is as follows:

CallBackFetch (IN ViceFid Fid,
IN OUT SE_Descriptor BD);

File removal and file rename operations are handled in the same way as described above.

6. USER-CONTROLLED REINTEGRATION
In Coda, reintegration is an automatic process that initiates automatically and goes on until all the changes

made while disconnected have been reintegrated. Reintegration after disconnection does not take a lot of time on
a high-speed network and therefore doing things automatically without user intervention is desirable. However,
if a mobile client is reintegrating on a weak connection, it may take a long time for the updates to be propagated
to the servers. In such situations the user has to be given the choice to control reintegration. In QuickConnect and
MoneyConnect we have identified two types of common necessities of users – to control the time spent during
reintegration and the amount of money spent to propagate updates respectively.

6.1. Reintegration Controlled with Time
During weak connection the time taken for update propagation increases as the average number of packets

transferred per second decreases. In a typical scenario a mobile user makes updates to the cache contents while
disconnected for a period of time and then reintegrates over a weak connection from a modem. Even though
doing incremental reintegration will reduce the time taken for reintegration the user may still want to specify a
period after which he wants to stop reintegration. Also if the user is reintegrating from an airplane over an
expensive phone connection, he would like to limit the connection time and hence the reintegration time.

We have provided a useful feature that does just this. QuickConnect is a feature that allows user to specify the
time for which reintegration has to be carried out. We have used the Venus utility cfs to provide QuickConnect.
The user can specify the time for which reintegration has to be carried out in the following way.

%cfs quickconnect <reint-time(s)>

To implement this we modified the cfs utility and added the quickconnect command. The cfs command makes
a pioctl that in turn makes the file system ioctl. When making the pioctl call the time specified for reintegration is
passed on to ioctl. Venus services this ioctl system call. Venus handles this by doing reintegration of one volume
at a time and also notes the time spent. It reduces the remaining time for reintegration by the amount spent
reintegrating the last volume. When no more time is remaining Venus stops reintegration and remains in the
write-disconnected state until another reintegration is requested.

6.2. Reintegration Controlled with Money
With the recent advent of pricing models based on the number of packets transmitted we identified the need to

give user control over reintegration so that he is able to specify the amount to be spent for reintegration. Common
scenario these days is that mobile users work disconnected for short periods of time and then they connect to the
Internet using their cellular phones. Some cellular services nowadays have a cost model based on the number of
packets that come in and go out of the phone. In this case it does not help much by just being able to specify the
time for reintegration. Users want to control the amount of money spent in this pricing model. MoneyConnect is a
tool that allows the users to specify the amount of money that can be spent for reintegration.

Like QuickConnect, MoneyConnect is also implemented by modifying the cfs utility. To command used to do
reintegration by MoneyConnect is

%cfs moneyconnect <amount($)>

MoneyConnect is also initiated as a pioctl call. The amount to be spent is converted into the max number of
bytes that can be transmitted with that money. This parameter is passed along with pioctl to the ioctl system call.

Venus services this ioctl call by calling FailReconnect. A global variable is maintained to keep track of the
number of remaining bytes that can be reintegrated. This variable is reduced each time after a Venus Callback
RPC by the number of bytes that have been transferred by the last call back fetch. When the number of bytes
remaining reaches zero Venus calls FailDisconnect and stops reintegration.

7. PERFORMANCE EVALUATION
The goal of the experiments for incCoda was to demonstrate quantitatively how the incremental approach is

better than the full file transfer approach. We will first discuss performance of incremental hoarding followed by
reintegration.

7.1. Performance of Incremental Hoarding
Our experience with hoarding has been positive. The network performance has improved owing to the smaller

deltas that are being transferred in place of the complete files. We did the following experiment to evaluate
incremental hoarding against full file hoarding.

A random sample of 100 files was chosen from the source code of the Linux kernel. One set of 100 files was
chosen out of the version 2.2.5 and another set from version 2.2.12. We chose Linux source files since they are a
good example of a developer making changes from one version to another. The developer while disconnected
may have upgraded from one kernel version to another. As we know that Linux kernel changes little from one
version to another and so are good candidates to demonstrate incremental hoarding.

Five groups of 20 files each are made for conducting the experiment. The scenario of updating is as follows:
Initially we have two disconnected clients both working on the older version of the source code. While one of
them is disconnected he upgrades his files to the higher kernel version. When he reintegrates to the network all
the updates are propagated to the server. Later when the other client reconnects, his cache contents are
invalidated and the newer version of the source files are hoarded into his cache.

The payloads of the files were compared and the results obtained are show in Figure 2. The results are
expressed as a percentage of the transferred payload of the incremental approach out of the total payload using
the full file approach. The results indicate that incremental hoarding is always beneficial. In the best case the
incremental payload is less than 1/20th of the payload otherwise.

Figure 2: Payload Comparison Between Incremental Hoarding and Original Hoarding

From the calculations above we would like to present the benefits in a real world scenario. Lets say an IT
company that has a lot of mobile users within the company roaming with their mobile devices from place to place
within the premises of the organization. These users rely on Coda for their server needs and operate disconnected

Incremental Hoarding vs Original Hoarding

0
5

10
15
20
25
30
35
40

1 2 3 4 5
Linux source file set

%
of

 tr
an

sf
er

re
d

pa
yl

oa
d

while mobile. In this scenario lots of mobile users are constantly connecting and disconnecting from the network
and hoarding and reintegrating changes as they move from one place to another. If the average number of updates
made by a mobile user is 5MB and the actual size of the contents is about four times the size of the updates (the
average value from Figure 2) then the average bandwidth consumption per user is reduced to one fourth. The
implication of this is that since the average network usage is reduced the network can support up to four times the
number of users with the same bandwidth. Also in another sense it will provide these mobile users faster
hoarding thereby saving the user and the organization lot of useful time.

7.2. Performance of Incremental Reintegration
Using incremental reintegration considerably reduces the network traffic caused due to reintegration. The

performance in our experiments improved by one order as opposed to using the full file reintegration.

The subject files that we chose were Linux kernel source from above and also email files. We used one single
set of 100 Linux source files in this experiment. The other set of subject files that we used were day-to-day email
files. We used the email files in PINE of a typical user on his disconnected mobile device. While disconnected
we moved some emails from one folder to another causing moderate changes to the email files. We used about
ten email folders and the total size of all the email files was about 6MB.

The idea behind using email files is that users often write emails while disconnected and actually send them
upon reconnecting. Also users want to maintain the same email folders seamlessly on both – their mobile devices
and the fixed network. So if the user is managing his emails while disconnected moving some of them from Inbox
to another folder, the corresponding email files are updated. When he reconnects he would like to synchronize
the email folders with that on the fixed network thereby requiring reintegration of the email files. We believe that
incremental reintegration will be particularly useful for email files since the updates are a small percentage of the
actual file size. The results of our experiments prove the truth of this statement.

Table 1: The network traffic generated (in bytes) without and with the incremental approach for the Linux sources and the
PINE email folders.

The experiment done to measure the network traffic for Linux source files is as follows. A mobile user while
connected has one of the older versions of the kernel source on his mobile computer. He disconnects and while
away he installs a newer version of the kernel source files in the same directory location. When he reconnects the
files are reintegrated and the network traffic generated is measured in each case – incremental and full file
transfer.

To measure the network traffic we used rpc2tcpdump. This is a utility similar to tcpdump and is provided by
the Coda developers at CMU. rpc2tcpdump dumps the entire network traffic of RPC2 communication
between the Coda client and the server. The port on which the network traffic is generated for reintegration can
be specified and the network traffic is dumped for all the client-server communication that takes place during
reintegration. Care had been taken that Venus or Vice was not involved with some other network activity on
those ports at the time of reintegration.

We repeated the experiment five times for each of the subject files using both reintegrating methods and
obtained very encouraging values. The network traffic recorded is shown in Table 1. The reduction in network
traffic is by one order of magnitude. Figure 3 is a plot of the values in Table 1.

Linux kernel so urce files P IN E E m ail fo lders

W ithout
increm ental (b ytes)

W ith increm ental
(bytes)

W ithout
increm ental (b ytes)

W ith increm ental
(bytes)

4369370 570134 12604004 615136
4356584 628010 12635300 554648
4403780 553954 12837716 577352
4322542 582818 12768556 674152
4313856 556624 12774556 539468

Network Traffic for Linux Source

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2 3 4 5

Experiment number

N
et

w
or

k
Tr

af
fic

(K
B

)

Without Incremental With Incremental

Network Traffic for PINE Folders

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

Experiment Number

N
et

w
or

k
Tr

af
fic

 (K
B

)

Without Incremental With Incremental

Figure 3: Network traffic for Linux Source and PINE Email Folders

7.3. Heuristics for Reintegrating PINE Email Folders
To impress upon the benefits of using the incremental approach for reintegration we are presenting a

heuristic analysis using PINE email folders of a common email user. We chose email because it is a good
example of making updates while disconnected and reintegrating over a weak connection. Email is a day-to-day
application with which users spend on an average about 2.5 hours a day sending and receiving about 30 emails.
For executives these figures are much higher.

Table 2: Heuristics for Reintegrating PINE Email Folders

Count of events Reintegration Data Size
(bytes) Email

Processing Time
(min) E1 E2 E3 E4 E5 E6 E7 Incremental Traditional

5 3 1 0 0 1 0 0 9334 1481253
10 7 3 0 4 3 0 0 29704 2896004
20 14 5 0 7 5 0 0 56677 2893005
30 20 10 5 13 5 0 0 214873 2900727
45 36 12 15 20 7 1 1 321067 2905069

We identified common events that users do to manage their emails in PINE. Some of the common events are
removing emails from the Inbox, moving emails to another folder, etc. We identified 7 such events as shown in
Table 3. Also the time spent by users checking and managing emails varies. Some of the factors it depends on are
the number of emails the user gets, time of the day at which emails are being checked. Less time is spent if he is
rushing for a meeting and more time would be spent if the user were managing long accumulated emails. The five
processing times that we chose are shown in Table 5.2.

Table 3: Event description for PINE folders

Based on the survey conducted within Harris Networking and Communication Laboratory at the University
of Florida, we gathered average pattern for our events. While disconnected we performed these events on a
user’s email folders that are plain files in the Coda namespace. Upon reconnection the email folders are
reintegrated to the server. We conducted the experiment using the traditional method and the incremental
approach and noted the bytes transferred in each case for reintegrating the changes made to the email folders. The
results we came up with are shown in Table 2. Figure 4 shows the huge difference between using the incremental
approach and the traditional method.

Heuristics for Reintegrating PINE Email Folders

0
500

1000
1500
2000
2500
3000
3500

5 10 20 30 45
Email Processing time (min)

B
yt

es
 T

ra
ns

fe
rr

ed
 (K

B
)

Traditional
Incremental

 Figure 4: Heuristics for Reintegrating Pine Folders

7.4. Storage Overhead
The only cost that has to be paid for using the incremental approach is the storage space tradeoff because we

maintain RCS server on the Vice for every file. However, RCS stores the versions in a very efficient manner and
the space overhead is overshadowed by the performance gains obtained from using the incremental approach.
Figure 5 shows our evaluation of the extra space required on the Vice using the incremental approach as
compared to the regular full file transfer using the Linux source files experiment.

Event Description
E1 Messages removed from Inbox
E2 Postponed/send later messages

E3 Messages removed from folders other than
Inbox

E4 Messages added to folders other than Inbox
E5 Take address from email
E6 Create new folder
E7 Edit .pinerc

Storage Overhead using the
Incremental Approach

0
2
4
6
8

10
12
14

1 2 3 4 5

Linux source file set

%
 o

f o
ve

rh
ea

d
fr

om
 R

C
S

Figure 5: Storage Overhead due to RCS Version Files

Another storage overhead is on the client side to maintain the archives that hold the last version that the client
holds before any updates are done. The extra storage required by this archive is as much as the space required by
the Venus cache. However, since the Venus cache is usually small, the extra space is not really a burden since the
performance gains far out weighs the space loss.

8. CONCLUSIONS
We have experimented with a new way to do hoarding and reintegration. After reviewing the existing

hoarding and reintegrating mechanisms against the incremental approach we conclude that this approach is very
beneficial and promising. The benefits of the incremental approach are magnified in mobile computing
environments when the connection is weak because the bandwidth and connection are scarce in such networks.
The network traffic caused by the transfer of files is considerably reduced owing to the differential transfer of
contents. This is especially beneficial since it saves users connection time and money.

The improvements on the time spent and the reduction on the network traffic vary based on the usage pattern.
There is an improvement of one order magnitude when few changes are made on cache contents while
disconnected. However, the gains are only reasonable when many changes are made. As mentioned earlier, our
premise has been that users are disconnected only for short periods of time, and few changes are expected from
the users during these short periods of disconnection. Based on this, the incremental approach has highly positive
results in realistic scenarios. Also this approach is transparent and does not require user intervention or
administration.

However there are certain limitations and drawbacks to this approach. The main drawback of this approach is
that it largely depends on how similar the two versions of a particular file are. In the worst case one might make
global replacements in a text file to a particular string resulting in a differential file that is as large as the older
version resulting in little gain from this approach.

Transfer of binary files with the incremental approach is not as attractive as for text files. However, this is
attributed to the diff algorithm.

Another limitation within this implementation is that there is high dependability on the Unix rcsdiff and diff
utilities that are not very sophisticated.

9. REFERENCES
[BRAa] Braam, P.J., InterMezzo File System: Synchronizing Folder Collections. White Paper, Stelias

Computing Inc. http://www.inter-mezzo.org/docs/intermezzo-sync-white.pdf, April 2001.

[BRAb] Braam, P.J., The Coda Distributed File System. http://www.coda.cs.cmu.edu/ljpaper/lj.html, April
2001.

[CODA] The Coda Group. Coda File System. Available from http://www.coda.cs.cmu.edu

[GUY90] Guy, R.G., Heidemann, J.S., Mak, W., Page, T.W. Jr., Popek, G.J., Rothmeier, D., Implementation of
the Ficus Replicated File System. In Proceedings of the USENIX Conference, Anaheim, California,
June 1990.

[HEL01] Helal, S., Hammer, J., Zhang, J., Khushraj, A., A Three-tier Architecture for Ubiquitous Data
Access. ACS/IEEE International Conference on Computer Systems and Applications, Beirut,
Lebanon, June 2001.

[KIS92] Kistler, J.J., Satyanarayanan, M., Disconnected Operation in the Coda File System. ACM
Transactions on Computer Systems, Vol. 10, No.1, February 1992.

[KIS93] Kistler, J.J., Disconnection Operation in a Distributed File System. PhD thesis, Carnegie Mellon
University, School of Computer Science, 1993.

[KUE94] Kuenning, G.H., The Design of the Seer Predictive Caching System. In Proceedings of the Workshop
on Mobile Computing Systems and Applications, Santa Cruz, California, December 1994.

[LEE99] Lee, Y., Leung, K., Satyanarayanan, M., Operation-based Update Propagation in a Mobile File
System. In Proceedings of the USENIX Annual Technical Conference, Monterey, California, June
1999.

[MIC99] Microsoft Windows 2000 Server, Introduction to IntelliMirror Management Technologies. White
Paper, Microsoft Corporation, 1999.

[MUM95] Mummert, L.B., Ebling, M.R., Satyanarayanan, M., Exploiting Weak Connectivity for Mobile File
Access. In Proceedings of the Fifteenth Symposium on Operating System Principles, Copper
Mountain, Colorado, December 1995.

[MUM96] Mummer, L.B., Exploiting Weak Connectivity in a Distributed File System. PhD. thesis, Carnegie
Mellon University, School of Computer Science, Pittsburgh, 1996.

[SAT90] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere, D.C., Coda: a
Highly Available File System for a Distributed Workstation Environment, IEEE Transactions on
Computers, Vol. 39, No. 4, April 1990.

[SAT93] Satyanarayanan, M., Kistler, J.J., Mummert, L.B., Ebling, M.R., Kumar, P., Lu, Q., Experience with
Disconnected Operation in a Mobile Computing Environment. In Proceedings of the USENIX
Symposium on Mobile and Location-Independent Computing, Cambridge, Massachusetts, Aug 1993.

[SAY00] Saygin, Y., Ulusoy, O., Elmagarmid, A.K., Association Rules for Supporting Hoarding in Mobile
Computing Environments. In Proceedings of the Tenth International Workshop on RIDE, San Diego,
California, 2000.

[TIC85] Tichy, W.F., RCS – A System for Version Control. Software-Practice and Experience, Vol. 15, No.
7, July 1985.

http://www.inter-mezzo.org/docs/intermezzo-sync-white.pdf
http://www.coda.cs.cmu.edu/ljpaper/lj.html
http://www.coda.cs.cmu.edu/

	ABSTRACT
	INTRODUCTION
	TYPES OF CONNECTIVITY
	OVERVIEW OF CODA AND RCS
	Coda Structure and Venus States
	Handling of Weak-Connectivity
	Revision Control System

	INCREMENTAL HOARDING
	INCREMENTAL REINTEGRATION
	USER-CONTROLLED REINTEGRATION
	Reintegration Controlled with Time
	Reintegration Controlled with Money

	PERFORMANCE EVALUATION
	Performance of Incremental Hoarding
	Performance of Incremental Reintegration
	Heuristics for Reintegrating PINE Email Folders
	Storage Overhead

	CONCLUSIONS
	REFERENCES

